Modul e-V
VECTOR CALCULAS

Course outcome KAS-103T (CO-V

Apply the concept of vector for evaluating directional derivatives, tangent and
normal planes, line, surface and volume integrals



Lecture 1

SCALAR POINT FUNCTION

If for each point P of a region R, there corresponds a scalar denoted by f(P), then f is called a
“scalar point function” for the region K.

Example . The temperature f{P) at any point P of a certain body occupying a certain region
R is a scalar point function.

Example . The distance of any point P(x, y, 2) in space from a fixed point (x, ¥, 2,) 1s a
scalar function.

AP) = J(I—-Tu)z +(3f*,lfu)1 +(z-29) -

Scalar field
Scalar field is a region in space such that for every point P in this region, the scalar function

f associates a scalar f(P).

VECTOR POINT FUNCTION

If for each point P of a region R, there corresponds a vector F(P) then f is called “vector point
function” for the region R.

Example. If the velocity of a particle at a point P, at any time f be }'(P), then }' is a vector
point function for the region occupied by the particle at time .

If the coordinates of P be (X, y, 2 ) then

FP) =fixydi+fiy2)j+fi(xy 2k

Vector field

Vector field is a region in space such that with every point P in the region, the vector
function ?assnciates a vector ?(P).

Del operator: The linear vector differential (Hamiltorian) operator “del” defined and

AL ]

denoted as V=I5 ] %

This operator also read nabla. It is not a vector but combines both differential and vectorial
properties analogous to those of ordinary vectors.



GRADIENT OR SLOPE OF SCALAR POINT FUNCTION

If fix, v, 2) be a scalar point function and continuously differentiable then the vector

vf = ;i+}i+ kaf is called the gradient of f and is wrtten as grad f.

E RN
_ iZ+jL+kZL=V
Thus | grad f = i5 *ig +ka =V

GEOMETRICAL MEANING OF GRADIENT, NORMAL

Consider any point F in a region throught which a scalar field

fix, y, z) = ¢ defined. Suppose that Vf#0 at P and that there is

a f = const. surface S through P and a tangent plane T; for Normal N at P
instance, if fis a temperature field, then S is an isothermal sur-

face (level surface). If 7, at P, is choosen as any vector in the

tangent plane T, then surely ‘;% must be zero.

.4 S
Since 75 Vfﬂ—l}

for every j at P in the tangent plane, and both Vf and /i are

non-zero, it follows that ?f is normal to the tangent plane T
and hence to the surface S at P.

If letting 7 be in the tangent plane, we learn that Vf is normal

o S, then to seek additional information about f’f it seems
logical to let j; be along the normal line at P,.

i _ df
ds dN’

TI'EI‘I N=ﬁ' t.hEIl

So that the magnitude of ?f is the directional derivative of f along the normal line to 5, In
the direction of increasing f.

Hence, “The gradient [_V.f ] of scalar field flx, y, z) at P is vector normal to the surface

. . d
f = const. and has a magnitude is equal to the directional derivative ﬁ in that direction.



DIRECTIONAL DERIVATIVE

Let f= f(x, y, 2) then the partial derivatives i 3; ,g are the derivatives (rates of change) of f
in the direction of the coordinate axes OX, OY, OZ respectively. This concept can be extended to
define a derivative of fin a "given” direction Q. -

Let P be a point in space and |, be a unit vector from
P in the given direction. Let s be the are length measured
from P to another point Q along the ray C in the direction 5 Q C

of h. Now consider
fs) = fix, v, 2) = flx(s), y(s), 2(s))
T'hen .Ef'_f_ = ig_{ + .?f_‘..d_y + iﬁ

ds dxds odyds dzds A0
dar
Here -E; is called directioral derivative of fat P in the direction b which gives the rate of

change of f in the direction of b
dx- dy~ dz;

Since, EI+E,+Ek = b = unit vector ...(f1)
Eqgn. (i) can be rewritten as

g _ r?i+ii+ii -[£?+d—y}+£k)

ds ox dy  dz) \ ds 5 5

:l - [Ei+pi+£i ]-b="?f-b ..(ifi)
= L .
Thus the directional derivaave of fat P is the component (dot product) of Vfin the direction

of (with) unit vector p.

Hence the directional derivative in the direction of any unit vector ¢ is

d "
Normal derivative :{'= Vf-n, where j is the unit normal to the surface f = constant.

"



Example If 7 = xi+yj+2k then show that
(1) V(E.F) = 3, where 7 is a constant vector

(i) grad r = E
.13
(fif) grad — = -3
(iv) grad r* = nre-2 r, where r = H
Sol. (i) Let G = ayi+ayj+ask,r=xi+yj+2k,
then a.r = (@i+ay]+ark)-(xi+yj+2k)=ax+ay+az
A a ‘. Ea
V(a-r) = '5*‘}5*‘ 5, | @+ ay + a)
= @i+ayjtak = a. Hence proved.
(i) gradr = Ar = 2;%(I2+y2+32)]f2
2 I
= 24 =
(x? + v +22)/2 EJ
Hence, grad r = H+y+a = —a=f,
r r
-- (1) - ofd) - 22 22
(111 grad t_r_] B vkr] “alr) T

[
'
-
-
g

(i) Let 7 = xi +yj+zk.

Now, grad " s

Vr - I:—(x +y’+2°)

n(xX+ P+ 20 |x +y,t+z£']

(xi + yj +2k)
/2

"(xz 3 yl £Y ZZ)IH—IHI
(J|r3+y2 +22)
H-IE

y

sy
nr" 2y -

nr



Example If f= 3x% - y’2% find grad f at the point (1, -2, -1).

Sol.  grad f= Vf

grad ¢ at (1, -2, -1)

| —
—

o . 0 d
[:E+;$+k¥](3x2y—y3zz)
=
dy
i(6xy) + j(3x* - 3y’2%) + k(-2y°2)

i(6)(1)(-2) + j [(3)(1) - 3(4)(1)] + k(=2)(-B)(-1)
~12i - 9j — 16k.

2 | J
rg(hzy-fzz)ﬂ (Bx‘*y-y’zz)+k$(3xzy-y3zz)



Lecture 2

DIVERGENCE OF A VECTOR POINT

FUNCTION

If 7 (x,y, 2) is any given continuously differentiable vector point function then the divergence of

} scalar function defined as

(.0

 f—

| ox

+;’i+ki

dy oz

—

v} = f=

of

l‘.-—

ax

. .

+)F ay

. ? dﬂl

-ﬁ

PHYSICAL INTERPRETATION OF DIVERGENCE

Let © = vi+ v,j+ v,k be the velocity of the fluid

at P(x, y, 2).

Here we consider the case of fluid flow along a rectangular parallelopiped of dimensions

ox, oy, oz
Mass in = 7. dydz (along x-axis)
Mass out = v (x + ox) dydz
B (nr - = ox ] oyoz
ax ]

| By Taylor's theorem
Net amount of mass along x-axis

| avl" =
=0, 53/5; -[ v, + o 5.1‘]83{&.
. a; * §xdyde

>N

D
/ v, (X + &x)

C/A

B

| Minus sign shows decrease.

Similar net amount of mass along y-axis

i AP
S Budys:

Y



dv

and net amount of mass along z-axis = ——a?"'-ﬁxﬁyﬁz

av
*. Total amount of fluid across parallelopiped per unit time = -{%’—-+#+% oxoydz
x —

Negative sign shows decrease of amount

. — av:.' av? av"
= Decrease of amount of fluid per unit time = o +jay—+ &:

] Oxoyoz

Hence the rate of loss of fluid per unit volume

|
|y
¥
o

= V.o =div D.

Therefore, divp represents the rate of loss of fluid per unit volume.

Solenoidal: For compressible fluid there is no gain no loss in the volume element
sdivp =0
then 7 is called Solenoidal vector function.

CURL OF A VECTOR

If f is any given continuously differentiable vector point function then the curl of } (vector
function) is defined as

NG

CUII? — VK? = 1x§+;x§+kx£
- } = fi+fj+ fk then
i i k

a/ax d/dy 9/d.
fe fh [

?x?




PHYSICAL MEANING OF CURL

—'-—i

Here we consider the relation = wxr, w is the angular velocity r is position vector of a point
on the rotating body

Vxo

?x(ﬁx;)

curl ©

. = Wyi+ W, + Wk |
V x[(wyi+104 J+ wak) x (xi + yj + 2k)]

| F=xi+yj+zk
i § k
= yx [ w w;
X Vy 2
= Vx[(wyz—wy)i— (w2 — w3X)j + (WY — Wy x)K]
d d d .
= li—+j—+k— | X[(wrz-w )i = (W, z =W X J +(wyy —wyx)k]
=5t [(wyz—w3y)i - (wyz—w;x)
! j k
_| 2 9 9
- Jx J_y Jz
WHyZ—WaY WX—WZ WY —W0X

= (W +w)i-(w,-w)j+ (W + w)k
= 2 ()i + W+ wk) = 2w
Curl 7 = 2w which shows that curl of a vector field is connected with rotational properties
of the vector field and justifics the name rotation used for curl.

Irrotational vector: If curl 7 = (0, then the veclor 7 is said o be irrotational. Vice-versa, if

f is irrotational then, cur }‘ = 0.



Example If f = xy?i + 2¥%z j - 3y2? k then find div f and curl f at the point (1, - 1, 1).

Sol. We have f = xi? i +2x¥%z j - 322 k
P o Ve g G, @
div f = ——(xy )+ay(21 ¥2) +—(-3y2°)
= ¥+ X'z - 6z
1P +2AP 1) -6(=1)1) at(l,-1,1)
1+2+6=09,

curl [xy? i + 2x¥%z j - 3y2% k]
ik
J o J

ax oy o
IyZ ley.z -3_'{32

112 (-3yz2)-2. 112 (xy?) -2 (3y22
:{ay( 3y2?) az‘z””‘z’}”{az"” -2 (32 )}

Again, cur f

O 9. 3
+ k:ax(h yz) (xy )}

dy
i [-322 - 20%] + j [0 - 0] + k [4xyz - 2xy]
(=327 - 2x%)i + (4xyz - 2xy) k
(=3 (17 = 2(10%=1)) i+ (4(1)-=1)(1) = 2(1)(-1)} k at (1, -1, 1)
el e R



VECTOR IDENTITIES

Lecture 3

Identity 1: grad uv = ugrad v + v grad u
Proof: grad (uv) = V (uv)
= ;i-f-}—-i-i'—](lﬂ?}
dx “dy oz
- d - d - d
= I—(uv)+ j—(uv) + k—(uv
3 40) }ay{ ) az( )
( dv ou\ . dv du dv  du
- :{u—+v—]+; u—+v—]+k[u—+v—]
dx  ox dy oy dz oz
.0v  .0v  , dv Ou  .0u  , du
_ Ui—+ j—+k— |+ i—+ ] —+k—
dx "oy oz [ dx  dy 3::}
or grad uv = ugrad v + v grad u
Identity 2: grad (a-b) = axcurl b + b xcurl G + (ﬁ-’i?)f? F (ﬁv)a ‘
+ (-7 _ o P 7. . Ob
Proof: ad (a-b) = Xi—|(a-b =L[_.b+ _}
ol G-t} Bx(ﬂ ) ax . dx
Coofr 98) .- a’]
B El[bﬁax]-'.z‘ _ﬂle '
w . B b
Now, a x (lx—b] = [E —b)i-(ﬁ :)ﬁ
dx ax dx
= (ﬁ.ﬁ i = & X (;‘xa—b +{|F.t-§}i
. e dx dx
= E(ﬁ.ﬁ i = Ja X ;xﬁ + X la i)ﬁ
ox ox dx
. z(a.%]f =ax3 jx% + z[a-;;—x]é
w Y. = B . -
= 2 ﬂ-a—]l = nxcurlb+[a-'7]b-
Interchanging 7 and @, we get
E[E*E]i = b x curla + (b-V)a
ox -

From equations (i), (i) and (iii), we get

grad (@ - b)

i xcurl b + b xcurl @ + (@ -V) b

=i

(1)

..(1I)

...(iii)



Identity 3:

Proof:

Identity 4:

Proof:

Identity 5:

Proof:

div (1 a)

div (ua)

udiv a + a - grad u
V-(u'n')
d d d -
@ 320 2O
[lax+; + BZJ (ua)

W
.9, .. ., 0, . d
lﬁ(ﬂﬂ)"’}g(”ﬂ)*‘k'g
c[ou. dd| . {au..

l"ls;ﬂ+ll¥]f+]-

U f-i+ '-£+k-i +a-
ox ]ay dz

div (ua)

div (; X 3)
div (a x E)

I

div (a x b)

curl (ua)
curl (ua)

ucurl @ + (grad u) x a
V x(ua)
dx

- o a8
ﬁx(gﬂ*‘ua‘r]

Z[fa—u)xﬁ+u£{ix£]
ax ox

(grad u) x @ + ucurl a

curl (ua)

ucurl @ + (grad u) x a

—a+U—

v

(ua)

da

dul

S e

]+k%au-

+]

da |

—a+U—

dz
Jdul

Hminad™ ) * Rt

%y

du
Jz

Elzf

|



Lecture 4

VECTOR INTEGRATION

Vector integral calculus extends the concepts of (ordinary) integral calculus to vector functions. It

has applications in fluid flow design of under water transmission cables, heat flow in stars, study
of satellites. Line integrals are useful in the calculaton of work done by variable forces along

paths in space and the rates at which fluids flow along curves (circulation) and across boundaries
(flux).

LINE INTEGRAL

Let ?(?’]be a continuous vector point furction. Then JCF .dr, is known as the line integral of
F(¥) along the curve C.

Let F = Pll + rzj + l-3i' where F,, F,, F, are the compaonents of F along the coordinate axes
and are the functions of x, y, 2 each.

Now, = xi+y+2k
gr = dxi+dy] +dzk
Ic?-u': = IC(FIE+F2}+F3£]*(d.t;'-dy}'-l-dzf)

= IC{Fldx-t-dey-l-F;d:].

Again, let the parameteric equations of the curve C be

X = X5
y = v ()
z =2(h
_ r. - dax
then we can write -[C dr = L F | fld—+F1(fl—+ (f}—

were |, and t, are the suitable limits so as to cover the arc of the curve C.

Note: work done = LF-d;

Circulation: The line integral L_F .dr of a continuous vector point functional F along a

closed curve C is called the circulation of F round the closed curve C.

Irrotational vector field: A single valued vector point Function T (Vector Field T ) is called

irrotational in the region R, if its circulation round every closed curve C in that region is zero
that is J‘ rd; =0
g =



Example . Evaluate J(xdy-ya'x] around the circle ¥* + 1* = 1.

Sol. Let C denote the circle x2 + ¥ =1, i.e,, x = cos t, y = sin t. In order to integrate around
_, t varies from 0 to 2n.

Ix( dy dx
[[(xdy-ydy) = [ [xﬁ E]dr
2%
= J:_J [coﬁzt+sinzt)dt
_ 2R dt
0
(E3F
= 2K

Example Evaluate Lf-d}',where F =yzi+2xj+ xykand C is the portion of the curve

r =(@cos t)i+(bsin t)j+ (ct) k from t =0 to ;

Sol. We have r = (@acos t)i+ (bsin t)j + (cf) k.

Hence, the parametric equations of the given curve are Xx

acost y =bsint 2 =0t

dr
Also, F:' = (asint)i+(boosf)]j+ck
Now, J.?-JF = f:’.idt
c C dt

I

Jc(ﬁf+zzj+1yk)-(—HSMH+bm t j+ck)dt

= |(bet sinti+actcos t j+absintcos tk)-(~asinti+bcos t j+ck)dt

J!
nbcjc[t(cnszt—sinzt]+sintcust dt = abcjc[tcuszt+

—abc t sin® t +abc tcos” t+abcsintcos t) dt

sin 2t]dt

R
sin 2t+cns 2t cos Zt]f
2 4 4

R ,
abcj?[tcnsiu+sm Zt]dr - abc[t

0



Lecture 5

SURFACE INTEGRAL

Any integral which is to be evaluated over a surface is called a surface integral.

Let F(7) be a continuous vector point function. Let r

=F (4, ©) be a smooth surface such
that T (u, v)

pussesses conlinuous first order partial derivatives. Then (e noral
of _f(-l:) over S is denoted by

JS?(_r] -da = jsi'(_ r|- dS
where da is the vector area of an element dS and i

IS a unit vector normal to the surface dS.
Let F,, F,, F, which are the functions of x, Y. 2 be the components of F along the coordinate
axes, then

surface inlegral

Surface Integral = J; F ndS

|.F da

s

j.fs(fﬁ +5j +E:k). (dydzi +dzdxj +dxdyfrt
_'-L(.Fldy dz+ Fdz dx + Fydx dy).

VOLUME INTEGRAL

Let ?(;) Is a continuous vector point function. Let volume V be enclosed by a surface S given by

r = Fu,v)

sub-dividing the region V into 1 elements say of cubes having
volumes

(1)

AV,, AV,, ... AV

n
Hshen AVy = Ax Ay, Az,
kK =1L23.12 =\ | Seceosdas

where (x;, y;, z,) is a point say P on the cube. Considering the
sum

z?(xkryl:fzk AV,
k=1

taken over all possible cubes in the region. The limits of sum when 1 — == in such a manner that
the dimensions AV, tends to zero, if it exists is denoted by the symbol

jv F ?)dv- nrjvfd v ar”jv F dx dy dz

is called volume integral or space integral.



Example Evaluate -Us( yzi: +z.x}'+xyf)-d§, where S is the surface of the sphere x* + > +
22 = 4% in the first octant.

Sol. Hs(ﬁhmfhwi)'dg - Hs(yzi’-rzx}-rxyi).(dydzh.dzdxf*r-dxdyf']

ﬂs(yz dy dz +zx dz dx+ xy dx dy)

.E:'u ad yzdydz+ _[:L ad zx dz dx +£L\W xy dx dy
yz Jf-_f" .2 ﬁ' 2 Jai-y?
45 | e e v
0 0 0
%Ed;az - 22)d> +%‘Er(,;2_x2)dx+%j:y{nz—y2}dy

l[azzzwz" ]'_Fl‘[az.rz“x‘ ]"4_1[.112!4'2_,!&"Il ]ﬂ
0 0 0

I

2| 2 4) 21 2 4) 2| 2 4

1a* 1a* 1a* 34
T . = —
24 24 24 8

Example ©  Evaluate _“‘_P'.ﬁdﬁ, where T = zi + xj — 3y zk and S is the surface of the
cylinder x* + ¥* = 16 included in the first octant between z = 0 and z = 5.

Sol. Since surface S: X’ + ¥ =16

Let f=x+y -16
Vf = [f-%-+j%+k%] (% + y? - 16)
= 2xi + 2vi
- T Vf _ 2xi+2yj
‘Vﬂ Jir2+4y2

) Axi+yj) xityj xi+yf/
2J12+y2 J1e 4

"l
= )
Il

Now

(zf+.rj—3y’zk),[ ‘i]=%(z.r+,:y)



< WY

X +y'=16

Here the surface 5 is perpendicular to xy-plane so we will
take the projection of 5 on z1-plane. Let R be that projection.

- d;rdz = dxdz  4dxdz

] y oy
I‘!?.Ed‘s “‘(zi+xj-3yzzk)_(ﬁ;yj)-4dxdz
R

Y
II[H:xy)dxdz
R &

SincezvariesfmmﬂtoSandy= Jlﬁ—.rz on 5. r1s also varies from 0 to 4.

Ii[[u:ry]dx dz Jinfﬂ[\h:i > +x]dxd::
I:[— leG -x% ¢ %]4&‘2 = Is(4z +8)dz

0 0
(222 + 82)° = 50 + 40 = 90.

I



Lecture 6

GREEN’S* THEOREM

If Cbe a regular closed curve in the ryplane bounding a region Sand Az, y) and O (1, ¥) be
continuously differentiable functions mnside and on C then

H (Pdx +0Ody) = H (a—o---ai x dy

ox

Example . Verify Green’s theorem in plane for ﬁ('xz-lry')dx+(x2y+3)dy, where C is the
r

boundary of the region defined by ¥ =8rand x =2
Sol. By Green's theorem

d
i[_de+Qdy] = Hs[%?"gp x dy

Le., Line Integral (LI) = Double Integral (DI)
Here, P =x2-2xy, Q=2x%+3

aP

I — —2_1" Q —

y
So the R.H.S. of the Green's theorem is the double integral given by

R _

- 185

=[] [(2xv ~(=2x))Jdx dy

The region S is covered with y varying from -2J2Jx of the lower branch of the parabola
to its upper branch 2J2Jx while x varies from 0 to 2. Thus

DI = J‘ Irr(lry+2r}dydx

= Exyl +?_ry‘ B ix

82 zﬁdr = 1—33



The L.H.S. of the Green’s theorem result is the line integral
LI = §[.1r2 ~2xy)dx +(x°y +3)dy-
C

Here C consists of the curves OA, ADB. BO. so

LI = £=Im+ms+sa
= jm 4 - +jm = LI, + LI, +LI,

2
Along OA: y = 22 x.s0 dy= -J;d.r
LI, = Iﬂd(xz-?_ry)dx+(.r2y+3)dy

- I;[ 2-21'(-2\@&]}1:
(-20247)+3) -g

1
- E[ 5x° +442 - x¥? —3\.51'—1_ ] dx

dx




Along ADEB : X

=
I

Along BO : y

s &
Il Il 1 Il

if =

3 " )
%nﬁ%;mﬁzﬁ

40 64
- —

2, dx =0

3

.

5

12

IADB(IZ-ZIy]dI'l'(Izy-l-SPy
j_:(4y+ 3)dy = 24
2J2Jx , with x: 2 to 0.

szx
X

_I‘m(:.r2 —Zry}dx-i-(.rzy+3)dy
-[20(5:2 —mx%wﬁx_;)dx

40 o4
- _I_ .

3

5

12

LII +U2+ Lf.j - [ 4;+6:—12]+(24] .g.[_

= Hence the Green's theorem is verified.




Lecture 7

STOKE'S THEOREM

If F is any continuously differentiable vector function and S is a surface enclosed by a curve C,
then

§F-dr = [[(VxF)-ias.
C S
where 5 is the unit normal vector at any point of 5.

Example  Verify Stoke's theorem for F = (x* + ¥%) i — 2xy j taken round the rectangle
bounded by x=x=a,y=0, y=D.

Sol. We have F-dr = {(x*+ ¥ i — 2xy j}- {dx i + dy j)
= (x* + y?) dx — 2xy dy

(F-di = [ Fdr+[Fdrs| Fdis[Fdr

(—a,b)D A(ab)

LI |

I

L+ L+ L+ 1,

| L (2 +y?)dx —2xy dy}
l l C, +C,

_a “y=D>
L {(x? +b%) dx -0} [ dy=0]

3 A -
(x_q- bzx] X (-a0) O C, (a,0) X
3 a

- (Eﬂj +szﬂ)
3

I, = L{(Jr:2 +y?)dx—2xy dy|

—
I

S xw—l
[ {-ar +v?}0-2-a) y [.'.d.t:ﬂ]

2a_[:y dy

2

0
y -
Zn[z]b- ab®

: i
I, = J‘Cj(x2 +y“)dx-2xydy = Ic; x“dx dy=0|

3 \* 3
_ My (X 28
- L" dx‘(s)_,' 3




s

=
:
"

-4
o u

]

e,
o
=D
:
arl
-~
L
I

—
—

o

L+, +1,+1,

20° z]_ 2,23 a2
-{T+2bn ab-l-gn ab
- 4ab?

i ik

R N

x oy %
l:2+y2 -h'y 0
- 4yk
k
k(- 4yk) = - 4y
[ [-4yaxay

2\

Gl §

-a {Z]crdx
- 2% (%)%,
- 4ap?

From eqns. (i) and (i), we verify Stoke’s theorem.

...(if)



Lecture 8

GAUSS’S DIVERGENCE THEOREM

If Fisa continuously differentiable vector point function in a region V and S is the closed surface
enclosing the region V, then

”5?. ndS = _”Ldﬁff-"dv (D)

where 1 is the unit outward drawn normal vector to the surface S.

Example Evaluate ” (y 2 I+¢ X Jl+f_2 Zk] ndS, where S is the part of the sphere

2+ y* + 22 = 1 above the .t'y-plane and bounded by this plane.
Snl. Let V be the volume enclosed by the surface S. Then by divergence theorem, we have

Hslyzfg+zzxz}'+zzyzfc)-ﬁds = m div (y?2%] +2%x%] + 2%y%k) v

-”JV %‘ylﬁz]"' ;y(.c- 12]+%(32y2) dv

- [ff 220 avafff v

Changing to spherical polar coordinates by putting

X =rsinBcos ¢, y=rsin Osin ¢, 2= rcos 6
dV = r*sin 0 dr do do

n
To cover V, the limits of r will be 0 to 1, those of 6 will be 0 to = and those of ¢ will be

0 to 2m. y
2[[f,zv*dv = 2[ [**[ (rcose)(r?sinBsin¢)r’sinBar d0do

2]’;’ J'um .[: r®sin’ O cos O sin? ¢ dr d6 do

I

2[." [ sin® 0cos6sin? 6| | dodo

I
|
g

Pl
©

&
I
|
A
5|'

©

&
I
|



