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UNIT - IV MAGNETIC POTENTIAL Scalar
Magnetic Potential and Vector Magnetic Potential and its Properties - Vector MagneticPotential due 
to Simple Configuration 
Self and Mutual Inductances Determination of Self Inductance of a 
Solenoid and Toroid and Mutual Inductance Between a Straight, Long Wire and a Square Loop Wire 
in the Same Plane Energy Stored and Intensity in a Magnetic Field Numerical Problems.

Magnetic Scalar and Vector Potentials:

In studying electric field problems, we introduced the concept of electric potential that simplified the 
computation of electric fields for certain types of problems. In the same manner let us relate the 
magnetic field intensity to a scalar magnetic potential and write:

...................................(4.21)

From Ampere's law , we know that

......................................(4.22)

Therefore,...................................................................................................................................... (4.23)

But  using vector identity, we find that is  valid only where . Thus

the scalar magnetic potential is defined only in the region where . Moreover, Vm in general is 
not a single valued function of position.

This point can be illustrated as follows. Let us consider the cross section of a coaxial line as shown 
in fig 4.8.

In the region , and
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Fig. 4.8: Cross Section of a Coaxial Line

If Vm is the magnetic potential then,

If we set Vm = 0 at then c=0 and

We observe that as we make a complete lap around the current carrying conductor , we reach 
again but Vm this time becomes

We observe that value of Vm keeps changing as we complete additional laps to pass through the same 
point.  We   introduced Vm analogous   to   electostatic   potential V.   But   for   static   electric  

fields, and ,  whereas       for       steady  magnetic

field wherever but even if along the path of integration.

We now introduce the vector magnetic potential which can be used in regions where current 
density may be zero or nonzero and the same can be easily extended to time varying cases. The use 
of vector magnetic potential provides elegant ways of solving EM field problems.

Since and  we  have  the  vector  identity  that  for any vector , , we can 

write .

Here,  the vector field is called the vector magnetic potential. Its SI unit is Wb/m. Thus if can 

find of  a  given current distribution, can  be found from through a curl operation.

We have introduced the vector function and related its curl to . A vector function is defined 

fully in terms of its curl as well as divergence. The choice of is made as follows.
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...........................................(4.24)

By using vector identity, ............................................................................................. (4.25)

.........................................(4.26)

Great deal of simplification can be achieved if we choose .

Putting , we get which is vector poisson equation. 
In Cartesian coordinates, the above equation can be written in terms of the components as

......................................(4.27a)

......................................(4.27b)

......................................(4.27c)

The form of all the above equation is same as that of

..........................................(4.28)

for which the solution is

..................(4.29)

In case of time varying fields we shall see that , which is known as Lorentz 

condition, V being the electric potential. Here we are dealing with static magnetic field, so .

By comparison, we can write the solution for Ax as

...................................(4.30)

Computing similar solutions for other two components of the vector potential, the vector potential 
can be written as

.......................................(4.31)
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This equation enables us to find the vector potential at a given point because of a volume current 

density . Similarly for line or surface current density we can write

. ..............................(4.33)

The magnetic flux through a given area S is given by

Substituting

.............................................(4.34)

.........................................(4.35)

Vector potential thus have the physical significance that its integral around any closed path is equal 
to the magnetic flux passing through that path.

Inductance and Inductor:

Resistance, capacitance and inductance are the three familiar parameters from circuit theory. We 
have already discussed about the parameters resistance and capacitance in the earlier chapters. In this 
section, we discuss about the parameter inductance. Before we start our discussion, let us first 
introduce the concept of flux linkage. If in a coil with N closely wound turns around where a current

I produces a flux and this flux links or encircles each of the N turns, the flux linkage is defined

as . In a linear medium, where the flux is proportional to the current, we define the self 
inductance L as the ratio of the total flux linkage to the current which they link.

i.e.,....................................................................(4.47)

To further illustrate the concept of inductance, let us consider two closed loops C1 and C2 as shown 
in the figure 4.10, S1 and S2 are respectively the areas of C1 and C2 .
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Fig 4.10

if a current I1 flows in C1 , the magnetic flux B1 will be created part of which will be linked to C2 as 
shown in Figure 4.10.

...................................(4.48)

In a linear medium, is proportional to I 1. Therefore, we can write

...................................(4.49)

where L12 is the mutual inductance. For a more general case, if C2 has N2 turns then

...................................(4.50)

and

or .............................................................(4.51)

i.e., the mutual inductance can be defined as the ratio of the total flux linkage of the second circuit to
the current flowing in the first circuit.

As  we  have   already   stated,   the   magnetic   flux   produced   in C1 gets   linked   to   itself   and 

if C1 has N1 turns then , where is the flux linkage per turn.

Therefore, self inductance

= ...................................(4.52)

As some of the flux produced by I1 links only to C1 & not C2.
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...................................(4.53)

Further in general, in a linear medium, and

Example 1: Inductance per unit length of a very long solenoid:

Let us consider a solenoid having n turns/unit length and carrying a current I. The solenoid is air 
cored.

Fig 4.11: A long current carrying solenoid

The magnetic flux density inside such a long solenoid can be calculated as

..................................(4.54)

where the magnetic field is along the axis of the solenoid. 

If S is the area of cross section of the solenoid then

..................................(4.55)

The flux linkage per unit length of the solenoid

..................................(4.56)

The inductance per unit length of the solenoid

..................................(4.57)

Example 2: Self inductance per unit length of a coaxial cable of inner radius 'a' and outer radius 'b'. 
Assume a current I flows through the inner conductor.

Solution:

Let us assume that the current is uniformly distributed in the inner conductor so that inside the inner 
conductor.
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i.e.,

and in the region ,

..................................(4.58)

..................................(4.59)

Let us consider the flux linkage per unit length in the inner conductor. Flux enclosed between the

region and ( and unit length in the axial direction).

..................................(4.60)

Fraction of the total current it links is

..................................(4.61)

Similarly for the region

..................................(4.62)

& .................................(4.63)

Total linkage

..................................(4.64)
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The self inductance, ........................................................................................ (4.65)

Here, the first term arises from the flux linkage internal to the solid inner conductor and is the 
internal inductance per unit length.

In high frequency application and assuming the conductivity to be very high, the current in the 
internal conductor instead of being distributed throughout remain essentially concentrated on the 
surface of the inner conductor ( as we shall see later) and the internal inductance becomes negligibly 
small.

Example 3: Inductance of an N turn toroid carrying a filamentary current I.

Fig 4.12: N turn toroid carrying filamentary current I.

Solution: Magnetic flux density inside the toroid is given by

..................................(4.66)

Let the inner radius is 'a' and outer radius is 'b'. Let the cross section area 'S' is small compared to the

mean radius of the toroid 
Then total flux

..................................(4.67)

and flux linkage
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..................................(4.68)

The inductance

..................................(4.69)

Energy stored in Magnetic Field:

So far we have discussed the inductance in static forms. In earlier chapter we discussed the fact that 
work is required to be expended to assemble a group of charges and this work is stated as electric 
energy. In the same manner energy needs to be expended in sending currents through coils and it is 
stored as magnetic energy. Let us consider a scenario where we consider a coil in which the current 
is increased from 0 to a value I. As mentioned earlier, the self inductance of a coil in general can be 
written as

or ...........................................................(4.70b)

If we consider a time varying scenario,

..................................(4.71)

We will later see that is an induced voltage.

..................................(4.70a)

is the voltage drop that appears across the coil and thus voltage opposes the change of
current.

Therefore in order to maintain the increase of current, the electric source must do an work against 
this induced voltage.

. .................................(4.72)
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& (Joule). .................................(4.73)

which is the energy stored in the magnetic circuit. 

We can also express the energy stored in the coil in term of field quantities.

For linear magnetic circuit

...................................(4.74)

Now, ...................................(4.75)

where A is the area of cross section of the coil. If l is the length of the coil

...................................(4.76)
Al is the volume of the coil. Therefore the magnetic energy density i.e., magnetic energy/unit volume 
is given by

...................................(4.77)

In vector form

J/mt3 .................................. (4.78)

is the energy density in the magnetic field.


